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ABSTRACT
Various combinations of static and dynamic analysis techniques
were recently shown to be beneficial for software verification. A
frequent obstacle to combining different tools in a completely au-
tomatic way is the lack of a common specification language. Our
work proposes to translate a Pre-Post based specification into ex-
ecutable C code. This paper presents E-ACSL, subset of the ACSL
specification language for C programs, and its automatic translator
into C implemented as a FRAMA-C plug-in. The resulting C code
is executable and can be used by a dynamic analysis tool. We il-
lustrate how the PATHCRAWLER test generation tool automatically
treats such pre- and postconditions specified as C functions.

1. INTRODUCTION
A usual input of a software verification tool includes a program

with its (partial) specification. Testing tools need at least a precon-
dition (or test context) specifying admissible input data on which
the program should be tested, and usually require an oracle, decid-
ing if the results of the execution on a given test are correct. De-
tecting potential runtime errors by abstract interpretation also needs
a precondition to improve its precision. Tools for program proving
require a formal specification (or contract) with pre/postconditions,
loop invariants, etc. Although the specification is extremely impor-
tant for the verification process, its format varies from one tool to
another, especially between static and dynamic analysis tools. That
makes it difficult to combine them in a completely automatic way,
while recent research (e.g. [11, 16, 23, 13, 7]) showed that combi-
nations of static and dynamic analysis can be beneficial for software
verification.

A concrete example is SANTE [7] which efficiently combines the
value analysis plug-in [5] of FRAMA-C1 [12] and the structural test
generation tool PATHCRAWLER [4] for detection of runtime errors
in C programs. While all static analyzers of FRAMA-C share a
common specification language, called ACSL [2], PATHCRAWLER
requires a precondition specified in another format and an oracle
defined by a C function. Rewriting the precondition of the target
∗This work has been partially funded by the FUI9 ‘Hi-Lite’ project.
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C function in the PATHCRAWLER format remains the only manual
step of the SANTE method.

The primary objective of our work is to specify E-ACSL [21],
an expressive sub-language of ACSL that can be translated into C,
compiled and used as executable specification. Our second goal is
to develop its automatic translator E-ACSL2C into C [22].

This approach brings several benefits. To the best of our knowl-
edge, E-ACSL is the first formal behavioral specification language
for C that builds a bridge between static and dynamic analysis tools
and avoids manual rewriting of a formal program specification for
testing. Second, choosing a sub-language of ACSL has the advan-
tage of being supported by existing FRAMA-C analyzers. Third,
translating into C rather than into a specific format of a particu-
lar tool allows the usage by other analysis tools for C. Fourth, the
possibility to observe the status of an annotation during a concrete
execution may be very helpful while writing a correct specification
of a given program, e.g. for later program proving. Finally, an exe-
cutable specification makes it possible to check runtime assertions
that cannot be verified statically and to establish a link between
monitoring tools and static analysis tools.

The contributions of this paper include a presentation of E-ACSL,
a novel executable specification language for C programs, and its
advantages (Sec. 1, 2), an overview of its translation into C (Sec. 3)
and an illustration of how the resulting pre- and postconditions in
the form of C functions are automatically treated by the test gener-
ation tool PATHCRAWLER (Sec. 4).

2. EXECUTABLE ANSI/ISO C SPECIFICA-
TION LANGUAGE: E-ACSL

E-ACSL [21] is a strict subset of ACSL [2], which is a behavioral
specification language implemented in FRAMA-C [12], a platform
dedicated to analysis of C programs. ACSL takes the best of the
specification languages of both CADUCEUS [15] (itself inspired by
JML [8]) and CAVEAT [3], two pioneer tools of C program proving.

On the one hand, designed as a subset of ACSL, E-ACSL pre-
serves ACSL semantics. Therefore, existing FRAMA-C analyzers
supporting ACSL continue to be used with E-ACSL without any
change. On the other hand, thanks to its characteristics explained
later in this section, the E-ACSL language is executable, that is,
all its annotations can be translated into C and executed at run-
time. Thus it can be used by dynamic analyses and monitors. Due
to these two specific features (preserving ACSL semantics and be-
ing executable), E-ACSL eases combinations of static and dynamic
analyses.

Overview of ACSL.
ACSL [2] is expressive enough to be able to express most func-

tional properties of C programs. It has already been used in many
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1 int A[10];
2 /*@ requires \forall integer i; 0<=i<9 ==> A[i]<=A[i+1];
3 behavior elt_present:
4 assumes \exists integer j; 0<=j<10 && A[j]==elt;
5 ensures \result == 1;
6 behavior elt_absent:
7 assumes \forall integer j; 0<=j<10 ==> A[j]!=elt;
8 ensures \result == 0; */
9 int search(int elt){ // linear search in a sorted array

10 int k;
11 /*@ loop invariant 0 <= k <= 10;
12 @ loop invariant
13 @ \forall integer i; 0 <= i < k ==> A[i] < elt; */
14 for(k = 0; k < 10; k++)
15 if(A[k] == elt) return 1; // element found
16 else if(A[k] > elt) return 0; // not found (A sorted)
17 return 0; // not found
18 }

Figure 1: Function search looks for element elt in sorted
array A

projects, including large-scale industrial ones [12].
ACSL is based on a typed first-order logic in which terms may

contain pure (i.e. side-effect free) C expressions and special key-
words. For instance, the \result keyword allows the user to speak
about the result of a function, while \valid is a built-in predicate
stating that its argument is a valid pointer. ACSL terms include sets
of terms which can express groups of memory locations in a very
convenient way. For instance, *(t+(0..99)) is the term denoting
the first 100 cells of an array t. In addition to all machine types,
terms also include mathematical integers (discussed later in this
section) and reals.

An EIFFEL-like contract [19] may be associated to each function
in order to specify its pre- and postconditions. Contracts may also
include termination clauses (specifying termination properties) and
an assigns clause (to specify which memory locations may be mod-
ified by the function). For example, clause assigns *(t+(0..99));

in a function contract states that the function can only modify the
first 100 elements of t. These contracts may be split into several
named guarded behaviors for which the users may require com-
pleteness and/or disjointness. Contracts may also be associated to
statements, as well as assertions, loop invariants and loop variants.
Annotations also include definitions of (inductive) predicates, ax-
iomatics, lemmas, logic functions, data invariants and ghost code.

Running Example: Linear Search.
Fig. 1 shows a simple C function search with an ACSL func-

tion contract (that is also an E-ACSL contract) enclosed into @-
comments. The clause requires (line 2) is the precondition stat-
ing that the global array A must be sorted when this function is
called. The function has two different behaviors. If elt belongs
to A (clause assumes of behavior elt_present at line 4), then the
function must return 1 (clause ensures of this behavior at line 5).
Otherwise (clause assumes of behavior elt_absent at line 7), the
function must return 0 (line 8). The code also contains two loop
invariants (lines 11-13).

Overview of E-ACSL.
The requirement of being executable brings some natural limita-

tions on ACSL annotations that can be supported in E-ACSL. One
of them is related to quantifications. E-ACSL syntactically limits
quantifications to range over finite domains of integers in order to
be computable. Thus the general syntactic patterns of universal and
existential quantifications in E-ACSL are as follows:

1 \forall τ x1,. . .,xn;
2 a1 <= x1 <= b1 && . . . && an <= xn <= bn
3 ==> p
4

5 \exists τ x1,. . .,xn;
6 a1 <= x1 <= b1 && . . . && an <= xn <= bn
7 && p

where τ denotes the type of integral variables x1, . . . , xn, and ai, bi
may be any E-ACSL terms. In ACSL, such guards specifying an in-
terval for each binding (cf lines 2, 6) are not mandatory. Notice that
the quantifications in Fig. 1 respect these patterns.

Moreover, E-ACSL allows the user to define dedicated iterators
over recursive C datastructures (like linked lists, trees), and then
to quantify over them as in the following example for binary trees.
(This is the only feature of E-ACSL which is not yet part of ACSL.)

1 // type of binary trees
2 struct btree {
3 int val;
4 struct btree *left, *right;
5 };
6

7 // declare an iterator over a binary tree
8 /*@ iterator access(_, struct btree *t):
9 @ nexts t->left, t->right;

10 @ guards \valid(t->left), \valid(t->right); */
11

12 // is_even(t) is valid iff all values
13 // in the binary tree t are even
14 /*@ predicate is_even(struct btree *t) =
15 @ \forall struct btree *tt;
16 @ access(tt, t) ==> tt->val % 2 == 0; */

The nexts fields define how to access the immediate successors,
whenever the corresponding guards hold. In the same spirit as for
quantifications over integers, sets of memory locations are also syn-
tactically limited to finite sets.

Loop invariants in E-ACSL lose their inductive nature which is
usually required to prove them by induction. Indeed, preservation
of a loop invariant after any iteration should be proved and cannot
be established after one particular execution. Roughly speaking,
without the inductive scheme, a loop invariant in E-ACSL is equiva-
lent to two assertions: the first one before entering the loop and the
second one at the end of each iteration of the loop body.

Furthermore, in E-ACSL there are no lemmas (which usually ex-
press mathematical non-executable properties) nor axiomatics (non-
executable by nature). There is also no way to express termina-
tion properties of a loop or a recursive function, since detecting
non-termination in finite time at runtime is not possible. Finally,
E-ACSL does not include so-called experimental features of ACSL
that are likely to evolve in the future: the decision whether they
should be included in E-ACSL is postponed to the time when they
become stable.

All the other features of ACSL are fully supported in E-ACSL,
including mathematical integers, predicates and functions over C
pointers. Last but not least, a major semantical difference between
ACSL and E-ACSL is the presence of undefined terms in E-ACSL
(discussed later in this section).

Integers.
In ACSL, integer constants and operators, as well as logic vari-

ables of type integer, denote mathematical integers: integer arith-
metics is unbounded and never overflows. ACSL holds a small sub-
typing system to automatically coerce C integral types into mathe-
matical integers. This design was chosen for several reasons. First,
one of the main goals of FRAMA-C is program proving by dis-
charging proof obligations to automatic theorem provers. Such
provers usually work much better with mathematical arithmetics
than with modular arithmetics, that is, bounded arithmetics with



overflows. Second, specifications are usually written without any
implementation detail in mind, and potential overflows are imple-
mentation details. Third, it is still possible to use bounded modu-
lar arithmetics when required by using explicit casts: for instance,
(int)(MAXINT + 1) is equal to MININT, the smallest representable
value of int. Fourth, this choice makes it much easier to talk about
potential overflows in specifications: for example, thanks to mathe-
matical arithmetics, /*@ assert MININT <= x+y <= MAXINT;*/ spe-
cifies in the easiest way that x+y must not overflow. To preserve
ACSL semantics, E-ACSL uses the same rules for arithmetics, even
if that leads to some implementation issues (discussed in Sec. 3).

Undefinedness.
Another difficulty comes from the fact that any ACSL term is

logically significant, including those like 1/0. Such terms are not
problematic in ACSL. They help the user to write simple specifi-
cations like u/v == 2 without taking care of the nullity of v: if v

might be equal to 0, then this predicate would be just invalid. In
E-ACSL, such terms and predicates are however problematic since
their translations into C provoke runtime errors: that is not accept-
able. This problem extends to all terms and predicates which con-
tain a C expression leading to a runtime error.

In order to solve it, we follow Chalin’s Runtime Assertion Check-
ing semantics [6] by stating that semantics of such terms is “unde-
fined”: E-ACSL uses a 3-valued logic [18] like ALFA [9] or JML [8].
It is the responsibility of the tools interpreting E-ACSL to ensure
that an undefined term is never evaluated. Undefinedness is never-
theless consistent with ACSL since, if it exists and is defined, the
E-ACSL predicate corresponding to a valid (resp. an invalid) ACSL
predicate is valid (resp. invalid) as well. Thus re-using ACSL-com-
patible analyzers is preserved. An indirect consequence of this de-
sign is that operators && , || , _?_:_ and ==> in E-ACSL are lazy
(like the C counterparts for the first three of them).

3. AUTOMATIC TRANSLATOR TO C
We have developed a FRAMA-C plug-in, called E-ACSL2C in

this paper, which automatically translates E-ACSL into C. Its re-
leased open-source version2 already handles a significant part of
E-ACSL [22], while the current SVN version extends it to even more
features that we discuss in this section. E-ACSL2C takes as input
an annotated C program and returns the same program in which
annotations have been converted into C code dedicated to runtime
assertion checking: this code fails at runtime if and only if an an-
notation is violated.

The primary goal of E-ACSL2C is runtime assertion checking.
But, while ACSL is the lingua franca of FRAMA-C for static anal-
yses collaboration [12], E-ACSL also aims to become the lingua
franca of FRAMA-C for collaboration of static and dynamic analy-
ses, the main purpose of this paper. The results obtained by differ-
ent FRAMA-C analyzers can be then consolidated in the FRAMA-C
platform using the algorithm presented in [10].

The main idea of translation with E-ACSL2C is illustrated by
Fig. 2, where the function e_acsl_assert fails at runtime if its ar-
gument corresponding to the E-ACSL assertion condition is false.
Unfortunately this simple translation scheme does not work in the
general case for several reasons.

Special Keywords.
First, special E-ACSL keywords are not directly translatable into

C expressions. For instance, handling \result requires to intro-
duce a variable to store the result of the function while handling
2http://frama-c.com/eacsl.html

1 int div(int x, int y) {
2 /*@ assert y-1 != 0; */
3 return x / (y-1);
4 }

1 int div(int x, int y) {
2 /*@ assert y-1 != 0; */
3 e_acsl_assert(y-1 != 0);
4 return x / (y-1);
5 }

Figure 2: Naive E-ACSL2C translation. Original code (left) vs
translated code (right).

quantifications requires to generate a for-loop. Furthermore, the
translation is not necessarily local to the program point where the
predicate must hold. For instance, converting the term \at(x,L)

(representing the value of x at label L) requires to generate code at
program point L to store the value of x at L. Translation of all these
terms is already supported in the current version [22]. Fig. 3 pro-
vides a slightly more complex example of a non local E-ACSL2C
translation.

1 int A, B;
2 /*@ ensures A == \old(B);
3 @ ensures B == \old(A);
4 @ ensures \result ==
5 @ (A>B?A:B); */
6 int max_swap(void) {
7 int tmp = A;
8 A = B;
9 B = tmp;

10 if (A >= B) return A;
11 return B;
12 }

1 int A, B;
2 /*@ ensures A == \old(B);
3 @ ensures B == \old(A);
4 @ ensures \result ==
5 @ (A>B?A:B); */
6 int max_swap(void) {
7 int tmp_A, tmp_B, res;
8 int tmp;
9 tmp_A = A; // \old(A)

10 tmp_B = B; // \old(B)
11 tmp = A;
12 A = B;
13 B = tmp;
14 if (A >= B) res = A;
15 res = B; // \result
16 e_acsl_assert
17 (A == tmp_B);
18 e_acsl_assert
19 (B == tmp_A);
20 { int tmp_if;
21 if (A>B) tmp_if = A;
22 else tmp_if = B;
23 e_acsl_assert
24 (res == tmp_if); }
25 return res;
26 }

Figure 3: More complex translation.

Runtime Errors in Annotations.
The second difficulty is related to possible runtime errors. We

must generate additional guards to prevent execution of undefined
terms (cf Undefinedness section above). E-ACSL2C already han-
dles some particular cases. Let us present here a simple three-step
solution we propose to solve this issue in a systematic way.

First, run E-ACSL2C to generate (non guarded) C code. For ex-
ample, here is a function foo and its E-ACSL2C translation.

1 int foo(int u, int v) {
2 /*@ assert u/v == 2; */
3 return u/v;
4 }

1 int foo(int u, int v) {
2 /*@ assert u/v == 2; */
3 e_acsl_assert(u/v == 2);
4 return u/v;
5 }

Second, run the existing FRAMA-C plug-in RTE3, which sys-
tematically generates an ACSL annotation to prevent any potential
runtime error. RTE detects a risk of runtime error and inserts nec-
essary assertions. Third, convert these new assertions into C code
3http://frama-c.com/rte.html
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with E-ACSL2C again. For function foo, the resulting code after
the second and the third steps is the following.

1 int foo(int u, int v) {
2 /*@ assert v != 0; */
3 /*@ assert u/v == 2; */
4 e_acsl_assert(u/v == 2);
5 return u/v;
6 }

1 int foo(int u, int v) {
2 /*@ assert v != 0; */
3 e_acsl_assert(v != 0);
4 /*@ assert u/v == 2; */
5 e_acsl_assert(u/v == 2);
6 return u/v;
7 }

In this way, we handle any undefined term safely.

Implementing Integers.
The third issue is that the simplified translation scheme of Fig. 2

is in general incorrect since it uses modular arithmetics instead
of mathematical one. To address this issue, we use the GMP li-
brary4, which provides arbitrary precision arithmetics operating on
signed integers. But it entails calling GMP functions for variable
initialization, mathematical operations, and memory deallocation.
In the previously released version, instead of the single conditional
of Fig. 2, the generated code for the assertion is that of Fig. 4. Thus
using GMP integers leads to a much more complex translation: it
is the price to pay for correctness according to ACSL semantics.

mpz_t e_acsl_1, e_acsl_2, e_acsl_3, e_acsl_4;
int e_acsl_5;
mpz_init_set_si(e_acsl_1, y); // e_acsl_1 = y
mpz_init_set_si(e_acsl_2, 1); // e_acsl_2 = 1
mpz_init(e_acsl_3);
mpz_sub(e_acsl_3, e_acsl_1, e_acsl_2);
// e_acsl_3 = y-1
mpz_init_set_si(e_acsl_4, 0); // e_acsl_4 = 0
e_acsl_5 = mpz_cmp(e_acsl_3, e_acsl_4); // (y-1) == 0
e_acsl_assert(e_acsl_5 == 0); // runtime check
mpz_clear(e_acsl_1); mpz_clear(e_acsl_2);// deallocate
mpz_clear(e_acsl_3); mpz_clear(e_acsl_4);

Figure 4: Translation using GMP integers.

However, for simple examples this translation may be unneces-
sarily complex. Fortunately, the upcoming version of E-ACSL2C
embeds a type system, summarized in Fig. 5, that automatically in-
fers for any integer term t an interval into which t fits for sure. For
a (mathematical) integer constant, we infer the corresponding sin-
gleton interval. For all arithmetic operators (as illustrated in Fig. 5
for + operator), we can easily compute the smallest interval from
the deduced intervals of their operands. The interval of a left value,
like a variable, is easily computed as the value range of its C in-
tegral type, taking into account the considered architecture. The
interval of a conditional is computed by joining the intervals of the
left and right parts: it is the smallest interval containing both of
them. It is the reverse for casts: the inferred interval is the small-
est interval containing either the values of the type, or the interval
of the term. Potential invalid downcasts in case of overflows are
prevented by annotations generated by RTE as explained before.

Intervals may be efficiently computed. Furthermore, if an inter-
val becomes too big to be representable within a C type, we ap-
proximate it by [−∞,+∞] to speed up the computation.

Afterwards, according to the considered architecture, it is easy
to deduce the smallest C type (if any) which can be safely used for
representing the translation of t into C, or to use GMPs otherwise.
On our small examples, the generated code is similar to Fig. 2 and
3. For Fig. 2, it casts int values to long long (assuming a
standard architecture) to be sure that y-1 does not overflow. In
4http://gmplib.org

n ∈ Z
` n : [n;n]

constant
` t1 : [l1;u1] ` t2 : [l2;u2]

` t1 + t2 : [l1 + l2;u1 + u2]
plus

x of type τ
` x : [min_val(τ);max_val(τ)]

C variable

` t1 : _ ` t2 : [l2;u2] ` t3 : [l3;u3]

` t1?t2 : t3 : [min(l2, l3);max(u2, u3)]
conditional

` t : [l1;u1] min_val(τ) = l2 max_val(τ) = u2

` (τ)t : [max(l1, l2);min(u1, u2)]
cast

Figure 5: Type system (main rules)

practice, this type reasoning avoids GMP operations in a very big
number of cases.

Memory Observation Library.
Handling memory-related E-ACSL constructs (like \valid) re-

quires to know the structure of valid memory blocks at runtime.
We implemented a special C library for memory observation, and
link it to the code generated by E-ACSL2C. In addition, the trans-
lated C code is instrumented in order to record and update the state
of valid memory blocks and initialized locations.

Fig. 6 presents a very small example introducing how the mem-
ory recording and observation functions are used in the generated
code when a memory location is allocated (call of __store_block),
deallocated (__delete_block), initialized (__full_init), or checked
for being valid (__initialized and __valid). For global variables,
recording functions are called from main.

1 int *A;
2 void main(void) {
3 /*@ assert \valid(A); */
4 *A = 0;
5 }

1 int *A;
2 void main(void) {
3 int e_acsl_1, e_acsl_2;
4 __store_block(&A,4);
5 __full_init(&A);
6 /*@ assert \valid(A); */
7 e_acsl_1 =
8 __initialized(&A,
9 sizeof(int*));

10 if (e_acsl_1)
11 e_acsl_2 = _valid(A,
12 sizeof(int));
13 else
14 e_acsl_2 = 0;
15 e_acsl_assert(e_acsl_2);
16 __full_init(A);
17 *A = 0;
18 __delete_block(&A);
19 }

Figure 6: Translation involving memory observation.

The current translation appears unnecessarily heavy in some cases
because it requires to instrument each statement that modifies the
memory (even unrelated to memory blocks involved in annota-
tions) in order to update the runtime memory record. To optimize
memory space and time performances of the C code generated by
E-ACSL2C, we are currently implementing an efficient backward
dataflow analysis which computes an over-approximation of the
statements which are required to preserve the semantics of E-ACSL
memory-related constructs. Therefore only these statements have
to be instrumented.

http://gmplib.org


1 // the code of Fig.1 above
2 int search_precond(int elt){
3 int i, forall_OK;
4 for(i = 0, forall_OK = 1; i < 9; i++)
5 if(!(A[i] <= A[i+1])) // fail: A is not ordered
6 { forall_OK = 0; break; }
7 return forall_OK; }

Figure 7: File search.c containing the C code of Fig. 1 and
the precondition translated from E-ACSL into C by E-ACSL2C

4. PATHCRAWLER SPECIFICATION
Functions search_precond (Fig. 7) and search_postcond (Fig. 8)

present the simplified result of the automatic translation into C by
E-ACSL2C for the specification of the function search of Fig. 1.
The \forall clause in the precondition (Fig. 1, line 2) is translated
by a loop (Fig. 7, lines 4–6). The behavior elt_present is trans-
lated by the lines 3–9 of Fig. 8. The exists clause at the assumption
of this behavior (Fig. 1, line 4) is translated by the loop at lines 3–4
of Fig. 8. When it is true, the postcondition of the behavior (Fig. 1,
line 5) must be checked (Fig. 8, lines 5–9). Similarly, the behavior
elt_absent is translated by the lines 10–16 of Fig. 8. The actual
automatic translation is slightly different: it is a bit more verbose
and inlines the translated C code at the beginning (for the precon-
dition) and at the end (for the postcondition) of the function instead
of putting it into separate functions.

Let us illustrate how the pre- and postconditions translated into C
by E-ACSL2C can be automatically used by PATHCRAWLER. The
C precondition can be added into the C file containing the func-
tion under test like shown in Fig. 7. The reader may submit the
complete file search.c of Fig. 7 to PATHCRAWLER online5. The
C precondition search_precond will be automatically detected and
taken into account during test generation to generate tests satisfying
the precondition.

The C postcondition may be used inside an oracle to provide a
verdict for each generated test. The default oracle, generated auto-
matically by PATHCRAWLER, always gives the unknown verdict. It
can be customized and replaced by the code given in Fig. 8. The C
postcondition search_postcond is directly used in the oracle func-
tion oracle_search (whose name and signature must be respected)
to provide a verdict. With this oracle, a meaningful verdict (success
or failure) will be provided for each test.

The function oracle_search can be easily generated automati-
cally so that the whole process from an E-ACSL specification to a C
specification treatable by a testing tool becomes automatic. There-
fore, E-ACSL provides a common specification language for static
and dynamic analysis tools.

5. RELATED WORK
Although the C language is one of the most popular program-

ming languages, its semantics and low-level operations are still
major obstacles to apply formal methods. However, there has been
active research in this domain.

Necula et al. [20] propose to check the absence of buffer over-
flows in C code through a dedicated type system. When their type
system is not able to discard threats, dynamic checks are injected
into the code to allow dynamic verification. In a similar manner,
Hackett et al. [17] propose to augment the traditional type system of
C to express various conditions on inputs and outputs of C functions
that can be, in part, checked statically. E-ACSL is a full-fledged
specification language for C, which allows specifying assertions,

5http://pathcrawler-online.com

1 int search_postcond(int elt, int result){
2 int j, exists_OK, forall_OK;
3 for(j = 0, exists_OK = 0; j < 10; j++)
4 if(A[j] == elt) { exists_OK = 1; break; }
5 if(exists_OK == 1) // element present in A
6 if(result == 1) // search returned 1 (found)
7 return 1; // postcondition verified
8 else
9 return 0; // postcondition fails

10 for(j = 0, forall_OK = 1; j < 10; j++)
11 if(!(A[j] != elt)) { forall_OK = 0; break; }
12 if(forall_OK == 1) // element not present in A
13 if(result == 0) // search returned 0 (not found)
14 return 1; // postcondition verified
15 else
16 return 0; // postcondition fails
17 }
18 void oracle_search(int elt, int Pre_elt, int result){
19 int postcond_status = search_postcond(elt, result);
20 if(postcond_status) // postcondition verified
21 {pathcrawler_verdict_success();return;}
22 else // postcondition fails
23 {pathcrawler_verdict_failure();return;}
24 }

Figure 8: File oracle search.c containing the oracle based
on the postcondition of Fig. 1 translated from E-ACSL into C by
E-ACSL2C

invariants and pre/postconditions in first-order logic. This allows
us to use the same specification for various static analyses (abstract
interpretation, deductive verification, etc.).

Cheon [8] proposes a behavioral specification language for Java,
called JML. Inspired from JML, ACSL is first aimed at static ver-
ification, whereas JML was originally used for dynamic and later
for static verification. JML lets the user choose which kind of inte-
gers and attached semantics they use through various modes from
mathematical integers to checking overflows in the specification
[?], whereas ACSL and E-ACSL support only mathematical integers,
and can encode the other modes.

Other examples of executable specification languages are SPEC#
[1] and the closely related Code Contracts for .NET [14]. Here it
is possible to express the specification in the same language as the
code. If using the same language may seem easier to the program-
mer, it has some drawbacks. Indeed, some conditions, like integer
overflows, are difficult to express, because the underlying program-
ming language does not allow to express it. As discussed earlier,
those particular cases can be expressed in ACSL, thus they consti-
tute challenges that E-ACSL and E-ACSL2C address.

ALFA [9] is a programming and specification language, derived
from Ada, which also aims at filling the gap between static and dy-
namic analysis. It is designed and developed in the Hi-Lite6 project.
In addition to a static verification tool, ALFA comes with a compiler
that permits dynamic verification of conditions. As JML, ALFA
supports several arithmetic modes.

A major difference between our work and the above specification
languages for other target languages, is the memory observation.
Indeed Java, Ada, and C# (except for the unmanaged code, which
cannot be verified with Spec# or Code Contracts) enforce strong
properties of its memory models which ease design of languages
and development of tools. Therefore, E-ACSL2C must embed a
complex runtime memory observation system which is usually not
required in other languages.

Thus E-ACSL stands out from all previous approaches for the C
language because of its greater expressiveness and the possibility
of using the same specification for both dynamic analysis and ad-
vanced static analysis.

6http://www.open-do.org/projects/hi-lite

http://pathcrawler-online.com
http://www.open-do.org/projects/hi-lite


6. CONCLUSION
We proposed an expressive formal specification language E-ACSL

for C supported by static analyzers of FRAMA-C, that can be au-
tomatically translated into executable C specifications. We empha-
sized particular issues related to specific keywords, quantifications,
mathematical integers, memory-related annotations and undefined
terms. We presented our solutions for these issues, most of which
are already implemented and available in the released (or current
SVN) version of the E-ACSL2C translator. Moreover, we identi-
fied potential disadvantages in the current translation and proposed
several improvements.

The specifications translated by E-ACSL2C are usable for run-
time assertion checking and treatable by a testing tool for C pro-
grams. We illustrated how a translated specification is automati-
cally treated in PATHCRAWLER, that avoids to manually rewrite
the specification in another format for a testing tool. The experi-
ments with the combined method SANTE in [7] showed that SANTE
is more precise than a static analyzer and more efficient in terms
of time and number of detected bugs than test generation alone.
The present work offers a common specification language for static
and dynamic analysis tools and will help to develop and better au-
tomatize their combinations. Future work includes finalizing the
development of E-ACSL2C, its integration into the SANTE tool and
further exploration of combined techniques for software verifica-
tion.
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